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Partly degenerate differential heat conduction and thermal elasticity equations with coefficients of the 
generalized function type are derived for investigation of thermal processes in inhomogeneous operating 
MCC elements containing sector- and wedge-shaped foreign through inclusions during their manufacture 
and operation. The process of finding solutions for the derived equations is illustrated by an example of 
the heat conduction problem for a plate with a wedge-shaped inclusion having the opening angle 2~o. 

The development of metal ceramic cases for integrated circuits (IC) is rapidly approaching the stage when it will 
become nearly as important as the development of IC themselves. A crystal IC with the highest speed and closest packing 
that can be invented becomes useless if it cannot be connected electrically, mechanically, and thermally with the subsequent 
level of radio electronic complex compounds. Therefore, MCC developers and users are always faced with a problem 
whose complexity increases from day to day [1, 2]. During MCC manufacture and operation their metal ceramic connec- 
tions experience substantial thermal effects. The serviceability of such inhomogeneous metal ceramic elements at high 
temperatures depends on their geometrical shape, the physical and mechanical properties of the materials and the operating 
conditions. It should be noted that whereas the operating conditions are usually prescribed, the first two factors can vary 
and should be considered in close relation with each other. One of the crucial criteria for choosing materials for MCC and 
their design is material thermal strength by which is meant here the ability [3-5] of the operating metal ceramic elements 
to resist heat fluxes without any destruction. 

It was found [6-8] that the wear resistance and types of destruction of solid alloys depend on the properties and 
structural characteristics of particular components. 

Studies of temperature stresses in ceramic objects, which are necessary for estimating their thermal strength, should 
be conducted with their characteristic features exhibited in experiments, primarily, mechanisms of ceramic deformation 

associated with the material structure taken into consideration [9]. The strain diagram field for dense oxide ceramics at 
temperatures of 0.5Tin,it is practically linear up to destruction [10]. Therefore studies of temperature stresses and strains in 
dense ceramic bodies over a temperature range from 300 K to 0.5Tm~t can be carried out within the framework of elasticity 
theory. 

As a result of differences in the temperature coefficients of linear expansion (TCLE) of the matrix and the foreign 
inclusion materials at their connection, temperature stresses which arise with a great difference of TCLE may be very large 
[7]. Since the strength properties of the matrix materials may be quite low, for example, for particular types of ceramics, 
a foreign inclusion can lead to destruction of the connection. Therefore the problem of finding the thermally stressed state 
in the metal-ceramic connection region is very important [11-13]. 

In what follows the operating elements of MCC containing sector- and wedge-shaped inclusions will be assumed to 
be thin-walled piecewise homogeneous structures consisting of individual parts with different physical and mechanical 
properties which are constant within each of the parts. In each specific case the physical and mechanical properties of a 
piecewise homogeneous body as an entity may be described in terms of asymmetric unit functions [14]. The apparatus of 
generalized functions appears to be effective for derivation of the basic heat conduction and thermal elasticity equations and 
their subsequent solution [15]. 
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Fig. 1 Fig. 2 

Fig. 1. A plate with a foreign inclusion shaped like an annular sector with the median 
radius R (m) and wall thickness 2h (m). 

Fig. 2. A plate containing a foreign through wedge-shaped inclusion with the opening 
angle 2~o o (rad). 

An inhomogeneous operating MCC element which represents the metal ceramic body studied will be simulated by 
a thin plate, 26 in thickness, containing a thin-walled through foreign inclusion formed like an annular sector with the 

median radius R and wall thickness 2h (Fig. 1). 
Heat transfer between the plate surfaces z = +6 and the environment follows Newton's law, the temperatures of 

fluids flowing over the surfaces being equal (t +~f = t-f = tf). For the description of heat conduction in a inhomogeneous 
plate use will be made of a system of simultaneous differential equations for the integral characteristics T, T* of the 

temperature t(r, ~, z, r) [16, 17]: 

A(r, q~)AT§ ~)AT* + OA(r, ~9) OT § 0A*(r, q~) OT* § 
Or Or Or Or 

+ OA(r, q~) 1 OT + 0A*(r, q~) 1 OT* ~+(r, e~)[T-- 
dq~ r ~ Oe~ 0o? r 2 O~ 

--t~_(r, % x)] --~o~_ (r, q~)[T*--t c-(r, % x ) l=C( r ,  qD) 7 ~§  qD)~h*, 

x 

+ 

1 

0A*(r, qD) OT 
A** (r, q~) AT* + 3A* (r, q~) AT + 3 Or 0---~ + 

_ _  0 A * *  (r ,  cp) 0A**(r, q~) OT* + 3 0A*(r, qo) 1 OT + • 
Or Or a~ r 2 O~ a~ 

{[ 1 A.(r, q ) ) lT* - -~+ ( r ,  ~)t~(r ,  % x)+ OT* 3 ~+ (r, e?)+ - - ~  
O~ 

+ a _ ( r ,  q~)'[T--t~+(r, ~, x)] 1 = 3C* (r, q~) T +  C**T*. 
J 

(1) 

with the definitions 
6 1 8 

A(r, ~p)= _)sLt (r, % z)dz; A* (r, ~p)=-'7-o -6S zLt (r, % z)dz; 

6 1 6 
c (~, ~ ) =  S ~~ (~, ~, ~)d~; c* (~, ~ ) = - T - J l  ~c~(~' ~' z)dz; 

3 8 3 8 
A * *  (r, q~) = - -  f z ~ ,  (r, cO, z) dz; C** (r, q~) = "77-_ ( z~co (r, ~, z) dz; 

c t + 5 : t 7  . 1 ~ t . ( r ,  % . z ,  z)  dz; 
~ •  = ~x + 5z ~-[; t•  = - - - T - -  ' T ~ =  28 _ ~ 

(2) 
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3 6 

T* [ zt* ( r , = . % z, x)dz; t*(r, % z, x)=t(r, % z, x ) - - to - -  is the body temperature increment; Cv (r, ~, z) = c(r, ,p, 
26 ~ _.~ 

z)p(r, ~o, z) is the volumetric heat capacity of the inhomogeneous plate; A = OZ/Or ~ + 1/r. 0/0r + 1/r 2- Oz/O,pz; t+~, t-~ are 
the temperatures of  fluids flowing over the upper z = +6 and lower z = - 6  plate surface; T = 0T/0r. 

The physical and mechanical properties of a plate with an inclusion of annular sector type will be expressed as [17] 

p (r, cp) = p, + 2h (Po - -  P,) 6 (r - -  R) N (cp), 

N (cp)= S_ ((p+%) --S+(q~q)o), 6 ( r - -R )=  lim S_(r--R q-h)--S+(r--R~h) (3) 
n~0 2h 

Then, for the thermal elasticity problem symmetric relative to the median plane of the plate we have T* = 0 and from 
relations (2) we can write [17] 

A(r, w)=26t~,~'~ + 2h(L~~ A*(r, q~)=0, 

C (r, q~) = 26 [c~ t~ -b 2h (c~ ~  c~ ~)) 6 (r - -  R) N (q~)], C* (r, q~) = 0.] 
(4) 

After substitution of expressions (4) and some transformations, the system of simultaneous heat conduction 

equations (1) as applied to the process of firing the MCC elements considered, which ensures their symmetrical heating, 
can be reduced to one heat conduction equation for T: 

aT , N (e?) 6' (r - -  R) q- AT - -  • (T - -  tr = 1 7 ~ + 2 h ( l _ K x )  
(7,, 1 = 

--}-2h<(1--Kx)---~{ ~r-rt" 6T ~=, _~ R-1 O~ zo~T LR)N((p, § 

(5) 
+ -R- ~-~~ 6_ (,~ + %) - a T  _ %) 1 

- cp=cp~--0 

+ [(~)c~~ all )7"l,=n + ( : ,  L~"~6 ~z~ •  (cp)~. 6 (r - -  R), 

where % and ~ are the coefficients of  heat transfer from the inclusion and the basic material surfaces: a~ = k(~,/c(~)~ is the 

thermal diffusivity of the basic material; 6+(~) = dS• 6'(~) = d6(~)/d~; xZi = a~/k~ K x = X(~ i = 0.1. 

The expressions for the coefficients 

~ ; , ~ ( 3 ~ + 2 ~ ) ~ z , t , ( r ,  % z, "Odz, 
J* = _ ~, + 2---~ _-~ _~ ~. -+- 21, 

J , =  t'z ~(~-}-tu) dz, J~= t z Z ~ d z ,  J *= J z - - d z ,  

(6) 
a t~ (3k -+- J~ = [ z~dz, S* = t z 2~) cz,t* (r, % z, ~) az, 

_.~ ~ ,t + 2t* 
6 6 

J r =  jz~ ~ + 2 ~  - 
--6 --6 

are the definite integrals entering into the system of simultaneous thermal elasticity equations for inhomogeneous plates 

[15]. Here ~, = k(r, ,p, z), ~ = ~(r, ~o, z) are Lain6 coefficients and a t = o~,(r, ~o, z) is the temperature coefficient of 

linear expansion of piecewise homogeneous plates. After substitution of the thermoelastic characteristics (3), using the 
filtering property of the delta function and carrying out direct integration reduce relations (6) to 

J ,  = 26 [7, -q- 2h (7o - -  7,) 6 (r - -  R) N (q~)], J .  = 26 [~t 1 -~- 2h (bto - -  ~tl) 6 (r - -  

- -  R)  N (q0] ,  J3 = 26  [;~t -+- 2h (% - -  )~x) 6 (r - -  R)  N (q~)l ( T  - -  10), Ja = 0, 
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9 (7) e ~ = " 2 - 8 ~ [ Y a q - 2 h ( y o - - y ~ ) 8 ( r - - R ) N ( r  J* = 0 ,  J~ = 0 ,  g ~ = 0 ,  
3 

j ,  = _~2 8a [u2. ~ 4- 2h (~o - -  ~g~) 8 (r - -  R) N (r 
3 

j(~)= 2 5~ [P-~ 4" 2h (b0 - -  F~) 8 ( r - -  R) N (tp)]. 
3 

In the above expressions the definitions are as follows: 

~q~i E~v~ ; Wi = ~ (~'~ 4- I~) E~ .. 
Y'=X,  4 - 2 ~  : 2 ( 1 - - , ~ )  X~4-2~, = 4 ( 1 - - , ~ )  ' 

o:(i)E 
Z~ = = ; [~ = 3~ + 2~; 

2~ + 2~h 2 (1 - -  v~) 

E: are the elasticity moduli; r,~ are the Poisson coefficients, i = 0.1. 

The substitution of (7) into the thermal elasticity equation for inhomogeneous plates [15] gives, after some transfor- 
mations, the following system of simultaneous partly degenerate differential thermal elasticity equations in terms of 
displacements for a plate with a through annular sector-shaped inclusion located symmetrically relative to the median plane: 

O~u 1 Ou u I [ g~ O~u 2~,: 4- ~ O~v 
Or ~ " + 2 ( y ~ 4 - ~ )  [ r~ O@ 4- r OrOq~ r Or r ~ 

2Yx 4- 3fxx joy 
r ~ 0r 

Ou ] 4 - - -  

2Z10(T- - to )  ] = O r  y:2h+ V1 <{[Yo4"9o- -  

,o- , ,  } 
u 4" (Zo-- ;q) (T --/o)l,=n X 

R , r~R--  

• N(<p)8'(r--R)4- go--F:{(R -&-r 2R1 

u N ( ~ ) 4 .  - - v + O  

o. , R o y ]  
- ( o +  );a o_O < 

0~'v _ 1 Ou :' _c_ 1 .2(y1§ 
Or S r Or r ~ ' gtr 

2y1-. 3gt Ou O ( T - - t o )  ] § 2Z: J r d:p Oq~ 

1 Ou ' 4h 

~:R plR 

02u 1 O:v 3 Ov + 
Oq) 2 2 OrOco 2R Oq~ 

ov "1 ~_ (~ + %) - 
Or ]~--a_r 

1 .-(?~v (271 + ~1) ' 0"2u 

r &p2 Or&p 

2h(~t o - l h )  [Ov v 

txl ~, Or R 

I ( ~ ~  ~1)[ 0-~rv + i (  1 + 1%Yo--V'-- #: 

4" 

- - +  

• 

(8) 

Ou Y o - - Y ,  0 ~'u Z o  Z t  6 (T- - - fo )  ] 
>< -- ' - -  ] N (~) + 

8(9 -7- tJo __ ~tl OrOs ~to --  f~t 0q) r= R 

-C, [ ]'O-- ]~'1 -V~ ~0-- ~t (, ~r ,t') + ('~:~0 - -Vl)  ~0/2 (Zo--XI)(T-- 

+ (v0 - -  - -  (Xo - -  Z,) (T - -  t0) r=R 
J(~=q%--0 

Let us consider the case where the plate contains a through foreign wedge-shaped inclusion (Fig. 2). Then, the 
physical and mechanical properties are functions of the coordinate ~ alone. Now, the heat-conduction and thermal elasticity 
equations will be written for this case. Then, relations (4) will become 

A(q~) = 28 [~,i ') + (~,~~ ~,i'))fl (r A* (q~) = 0, (9) 
. . . .  (., ,.(o) c(,))N C* C (qo) = zo t~ T t"~ -- (~)1, (~) = o, 
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"and relations (6) will be written as follows: 

J, = 28 [?t + (?o - -  YI) N (q~)], J~ =[2~ [1~1 + (~o -- lair) N.(cp)I, 
2 

J~ = 26  [X1 + (Xo - -  X1) N (q))] (T ~ to), Ja = 0, Ja = ' 8a [Yt Jr- (?o 
3 

'~1) N (qD)], t J l  ~ = 0,  J ~  = 0, J~  : 0, Jt = 2 ~ [ y ,  + O%-- ~z,) N (q~)l, 
3 

j ( , =  2 
3 

6 3 [,a~ + (t~o - -  tt,) N (r 

(10) 

"Substituting (9) into (1) and (10) into the thermal elasticity equation for inhomogeneous plates [15] and taking the 
structure of multiplying asymmetric unit functions [17] into account, we arrive at the following heat conduction equation 
and simultaneous system of thermal elasticity equations for a plate containing a wedge-shaped inclusion: 

1 AT - -  x~ (T - -  &) = /' + (l --K~)--7- 6_(~ + r  
at w=--q~.+o 

1 
Oq~OT ]W=r aO ~ 

(11) 

Or 2o~u 4- 1 Ou u 4- 1 [ ~ 02u , 2~ 4 - ~  OZv 
r Or r 2 2(%4-t t , )  r 2 O@ r OrOq~ 

- -  r-  T -  (271 ,-F 3P.a) ~ - -  29r 
Or 2r z ?o 4- ~to 

) _ _  ( ' ) 0'v (2~o+3p.o P.1 02u 4- 2yo -F ~to 2ya -7- F1 r 
'~1 ='~ FI 0q )2 ~70 "}- ~0 '~1 + ~J'l 0r0q) '~o -T [-.llo 

271+3,1'~ 0v 2 ( Xo Z1 ) r 2 0 ( T - - t o )  I N ( @ ) +  
Y1 -J- ~X1 ,) 0q) ?0 + ~'1"0 "~1 -~ ~1 Or 

+ 0 .  + r  - + % ) -  + r  - - -  

Y1 4- ~1 Or , ~=-r Or 

-- u)~=~,_o6+ (q~ -- q%)]l / ' 

02v 1 Ov v 1 [ 1 'OZv O2u 
OP -F -F 2 (71 + Pq) , (2?t + Ft) 4- 

r Or r 2 ~qr r &p"- 

42 1 (2yl+3pa) 0 u ~  --~--2;(1 O(T-- t~  l O q ~  - -  . __r ~1 [( 2?o+~o'iFo 

2Y' + F'x) 0 ' u l ~ .  r 0 " ~  + 2Y~ + 3tt~ 2?1+ 3~" ) o u I L L .  ' ~ + 2 ( 'Yo + I~O!~o 

) ( _) 71 =~ ~'1 0~lO 2 ~0 ~1 r. N (q~) - -  [Yo 4"- 
0r ~ Fo ~1 0r liar 2 

"'J/- ,0 - -  ('~1 -]-' I~1,1'] [ (~ - -  "~ J./_.).____q)e..]_O 8_ (q) -{- (pO, --  ( ~ "  -t.- ~, Oq) U ) ~..=eo--O 8+(q~--'- 
OU %)] 

- 

- -  (Xo - -  Xi) r [(T - -  t o ) r  8_ ((p 4- %)  - -  (T - -  to)!~=r 8+ (q) - -  q~o)]} - 

(12) 

Equations (11) and (12) determine the thermally stressed state of the operating element of a MCC with a foreign 
wedge-shaped inclusion. 
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The derivation of the reduced partly degenerate differential equations will be illustrated by an example of solving 
the heat conduction problem for a thin plate with a wedge-shaped inclusion, the apex of which lies at the coordinate origin. 
The angular opening of the inclusion is 2~0, the plate is assumed to be thermally insulated over the surfaces ~ = 0, 7r and 
z = ___6 and at a distance R from the coordinate origin it is assumed to be heated by a fixed heat source with a variable 
specific heat flux c h. In this case the source is a hollow thin-walled cylinder, 2c5 in height, with the wall thickness 2h. This 
case can be considered in determining the temperature gradients in inhomogeneous MCC elements during brazing of the 
leads to the elements, which, in turn, gives rise to temperature stresses bringing about various kinds of defects in the 

ceramics. 
Using Eq. (11) and taking account of the effect of the cylindrical heat source, after transformations we obtain the 

following partly degenerate differential heat conduction equation for determination of the two-dimensional quasisteady 
temperature field in a plate containing a wedge-shaped foreign inclusion [18]: 

O2T -t- 1 OT 1 __02T - (I -- K~) 1 [ 0 T  9=-9~ - -  
Or ---'-~- --7- O---~ -4- r' O@ 7 [ - - ~  6_(qD+~o) 

(13) 

aT t 6+(cp__%)I__Q,[I__(I__KQ)N(eo) ] 5(r--R) 
ae# ~=~0-o R 

and the boundary conditions 

OT t = O, (14) q~=O Ocp ~--~ 

where KQ = Q0/QI; Qi = q/47rX(i)fi; qo and q, are the specific heat fluxes from the heat sources in the inclusion and in the 

matrix, respectively. 
Applying the Mellin integral transform to the boundary-value problem (13), (14) for the variable r [19] 

(n, qD) = i T(r, r r n-1 dr (15) 

0 

(n = a + ioo is the complex variable in the Mellin transform) and using the properties of the delta function [17], we 

arrive at the heat-conduction equation for a system in the Mellin transform space 

[ dT 5_ (q~ -[- %) - -  
d ~  + n@ = (1 --/<~) [ ~ 9=-~0+0 
d q ~  2 

dTdq~ ~=C0o_O 6+ (cp - -  %) J/-- Q1Rn [ 1 ~ (1 - -  KQ ) N (cp)], 

dT" t~=~ =o. 
dqD ~=n 

The general solution of the transformed heat-conduction equation (16) will be expressed as 

7"=Acosnq~+Bsinnc~--  l - ' ~ ( t - - K x ) (  d ~ t  exp(--ni lq~+ 
2nij . ~=-~0+0 

dT / exp(--nilqD--q%l+))~ Q1Rn { 1 +  1 • 
§ %1-) - -  d---~-,~=~o_O n2 2 

X (1 --  KQ ) [sign _ (q~ + %) exp ( - -  ni lop + %1-) - -  sign+ (cp - -  r • 

x exp (- -  ni Iq~ - -  %1+) - -  2N (q~)l, 

(16) 

(17) 

where lop -+- q~ol~= = (q~ -4- %) sign~: (q~ 4- %), sign=~ (q~ 4- %) = 2S;  (cp • %) - -  1, i = 1 / ~  1. 
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In order to determine the boundary values of the derivative of the temperature transform dq'/d,p [ ,,=,,• and the 
integration constants A and B, appropriate sets of algebraic equations are solved on the basis of (17) and (18). With this in 
view, the final analytical expression for the Mellin transform of the temperature field in a plate with a wedge-shaped 
inclusion will be written as 

1 - -  K~. (1 - -  exp,(-- 2ni%))[exp(--ni (~x + %)) + sign+(~-- 

[sinn~ (1 + ~  

T = Q11~n (KQ - -  1) { 
,2n2i 1 + K~ 

\ 

- -  %) exp (-- ni (~ - -  %))] + ( 1 + I+K~I - -  K..____.~ exp (--  2niq~o) ) (exp (-- ni" (n + 

+ %)) --!exp (-- ni (~ - -  %)))} t cos nq~ ~ l+Kxl  - -  K~ sinin% (exp (--  ni [q~ + 

1 
+ %1_) + exp (-- ni [q~ - -  %1+)) (,' 1 + - -  exp ( - -  2nicPo) • 

', 1 -[- K~. 

1 - -  K~. exp (--  2ni%) ) I - -  K~_ sin n % (exp (-- ni (r~ + 
• I+K~.  - -  I + K ~  

(19) 

--1 [ I--K~. Q1/~ n X 
+ ~Po)) + sign+ (:t - -  %) exp (-- ni (rt - -  %)) q- 1 + Kz 2n 2 

• (KQ - -  1) (1 - -  exp (--  2ni%)) (exp (--  ni lop + %1-) -I- exp (--  ni lq~ - -  

1 ~ ff~. exp (-- 2m'q~0) 1 + > 
--%1+)) 1 + I + K ~  n ~ 2 

• [sign_ (q~ + %) exp (-- ni [qD + %1-) - -  sign+ (q~ - -  q)0) exp ( - -  ni @ ~ %1+) - -  2N (q~)]}. 

Inversion of the transform is performed using the Mellin inversion formula [19] 

1 o+i., 
7"(r, '0  = 2~---[-~ ~ ~ ('~' '~)r-nan" (20) 

We will consider the limiting case of the formula (19) encountered in practice when the opening angle of a foreign 
wedge-shaped inclusion ,O0 is equal to r /2  (Fig. 3). Then, with the use of expression (20), the temperature field arising at 
the junction ~ = r = 7r/2 of the two components of the semiinfinite heterogeneous plate (the bioplatelet case) will be 

found as 

a+r| R ) "  e x p ( - - n i n ) d n  

2 2ai "-7" n ~ (1 --b- 13 exp (--  nin)) 

,q~..-(1 i(~)~ 1 "~ - (  R / ~ 1-~xp(-2~in)  a n -  
- 2 ' ~ - n i , , ~ |  n2(1 +[~exp( - -n in) )  (21) 

--Q1 2~i ~&.\-r J n~ + - 2 -  2~--7- 

~•174 \ r 
where/3 = (1 - Kx)/(1 + Kx). 

Finally, we will consider a case important for solution of the problem of heat removal in operating homogeneous 
ceramic substrates which are heated by a cylindrical heat source with radius R. Then the thermal properties of the inclusion 
material and the basic material of the system are practically the same. With Kx = KQ = 1, QI = Q - q/(4~rXt6), ~0 = 0 
assumed in the heat conduction equation (13), it will be written in a form given earlier in the literature [20]: 

d2r +_ I d !  = Q 8 ( r - - R )  
dr ~ r dr R (22) 
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Y 

Fig. 3. A bioplatelet (the l imit ing case of a plate with a foreign inclusion 
shaped like a wedge with the opening angle ~o o = n/2 (rad)). 

A general solution of the above equation is easily obtained by direct integration: 

R r 
T (r) = (2 In S (r - -  R) -t- C In -t- D, (23) 

r R 
!l 1, r~>R, 

where C and D are integration constants determined from the respective boundary conditions; S(r - R) = 0,5, r = R, 

[ O, r<R. 
Thus, heat conduction equations (5) and (11) and thermal elasticity equations (8) and (12) as well as analytical 

expressions (19), (20) and (23) are used in the description of thermal processes occurring in in.homogeneous operating 

MCC elements with inclusions of the type considered in specific cases of their heating during their manufacture and 
operation. Then, thermal fields are necessary for the analysis of thermal stresses which produce flaws in metal ceramics 

such as microcracks, warping, lamination, bloating of inhomogeneous components in operating units, rupture of inner 
conductors. Moreover, the method suggested for the derivation of differential heat conduction and thermal elasticity 

equations can be effectively used for determining thermally stressed states of inhomogeneous components with various 

kinds of through and nonthrough foreign inclusions which must be obligatorily taken into consideration while designing 
MCC. However, nonthrough inclusions make the problem much more complicated as its dimension increases thereby [17]. 

For example, for a plate with through foreign inclusions the one-dimensional heat conduction problem becomes two- 

dimensional in the case of a nonthrough inclusion. The method suggested for finding the solution is also effective in that 

case, but it should be considered separately. 

NOTATION 

Tmelt , melting temperature of the material (oxide ceramics); TCLE --- at, temperature coefficient of linear expan- 

sion; 26, thickness of a thin plate; R, 2h, median radius and wall thickness of the foreign inclusion; t+f, t-f, temperatures 

of fluids flowing over the upper z = +6 and lower z = - 6  plate surfaces; r, so, z, components of the three-dimensional 
rectangular coordinate system (r, so, z); A, A ", A "~, coefficients in the form of definite integrals of thermal conductivities 
entering into the system of simultaneous differential heat conduction equations; T, T', integral characteristics of the 
temperature field of an inhomogeneous plate; r, time; 2x, Laplace operator; ~t z, coefficients of heat transfer from the plate 

surfaces z = _+6; tf+, half-sum and half-difference of temperatures for fluids flowing over the plate surfaces z =. _+6; C, 
C*, C ~', coefficients in the form of definite integrals of the volumetric heat capacity coefficients entering into the system of 
simultaneous heat conduction equations; T, T*, first derivatives of integral characteristics of the system in time r; t', 
temperature increment; t 0, initial temperature at which there are no stresses in the body; cv(r, so, z), c(r, so, z), volumetric 

and specific heat capacities of an inhomogeneous plate; p(r, so, z), density of the system material; p~, P0, physical and 
mechanical properties (any) of the basic material (matrix) and the material of an inclusion in the plate and their combina- 
tions; 6(r - R), N(SO), generalized functions, delta function in the radius, and characteristic functions in the angle; S• - 
R _+ h), asymmetric generalized unit functions; X ~ X~t, thermal conductivities of the inclusion material and the basic 

material of the system; • • reduced coefficients of heat transfer from the surfaces of an inclusion and the matrix; al, 
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thermal diffusivity of the basic material; 6'(r - R), first derivative of the delta function in the radial coordinate; Kx, 
criterion characterizing the relative thermal conductivity of the components of a piecewise homogeneous body; 6• • ,p~), 
asymmetric delta functions defined by 6• ___ ~'o) = dS + (~ + r J~, J2, ---, Js; J*l . . . . .  J*4; J(1~2, coefficients in the 
form of definite integrals of Lam6 coefficients in the simultaneous differential thermal elasticity equations; X(r, ~o, z), /z(r, 
~o, z), Lam6 coefficients of a piecewise homogeneous body; at(r, ~o, z), TCLE of a piecewise homogeneous body; Vi, • 
�9 i (i = 0, 1), combination of Lam6 coefficients and the TCLE of a piecewise homogeneous body; F+ u i (i = 0, 1), 
elasticity moduli and Poisson coefficients for the components of a piecewise homogeneous body; /3i, coefficients in the 
thermal elasticity equations characterizing temperature changes of the components of a piecewise homogeneous body as a 
function of the TCLE; u, v, w, displacement vector components for an inhomogeneous body (in the thermal elasticity 
problem considered for a MCC w = 0); % specific heat fluxes from the heat source active in a piecewise homogeneous 
body; 1~, criterion characterizing the thermal flux of the components of a piecewise homogeneous system; Q, reduced 
specific heat fluxes of heat sources in each component separately; n, complex variable of the Mellin integral transform 
(n = ~ + ioo); T, desired function in the Mellin transform space; [,p - ~0[, asymmetric generalized modulus functions 
for the coordinate of the angle; sign• + r asymmetric generalized sign functions for the coordinate of the angle; i = 
v~( - 1), imaginary unit; /3, coefficient characterizing the relative excess of thermal conductivity Kx; S(r - R), total 
(symmetrical) generalized unit function. 
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